

ESCOLA DE ARTES, CIÊNCIAS E HUMANIDADES

EACH – USP

PROGRAMA ENSINAR COM PESQUISA 2009

IMPLEMENTAÇÃO DE REALISMO EM FERRAMENTAS DE

REALIDADE VIRTUAL PARA TREINAMENTO MÉDICO

RELATÓRIO FINAL

Paulo Rodrigues Felisbino

São Paulo – Março/2010

Resumo

O objetivo deste trabalho é aperfeiçoar o realismo do framework ViMeT

(Virtual Medical Training), investigando e implementando ações a respeito de

texturas, sombras e outros requisitos necessários para o desenvolvimento, No

relatório parcial foi apresentada a revisão bibliográfica incluindo conceitos de

Realidade Virtual e trabalhos realizados na área de Medicina; uma introdução

sobre a API Java3D e o conceito de grafo de cena; uma introdução ao

framework ViMeT e seu diagrama de classes, detalhando as classes que

necessitavam de alteração. A fim de contextualizar o projeto, no presente

relatório é reapresentada uma introdução com os objetivos e justificativas do

projeto. Em seguida, são apresentadas as implementações efetuadas e os

resultados obtidos, além da conclusão final obtida com o término do projeto.

Sumário

1. Introdução .. 1

1.1 Objetivos ... 1

1.2 Justificativa.. 2

1.3 Disposição do Trabalho .. 2

2. Desenvolvimento do Projeto ... 3

2.1 Textura .. 5

2.2 Sombra.. 10

2.3 Lâmina .. 14

2.4 Cronograma .. 18

3. Conclusões ... 19

4. Referências .. 20

Apêndice .. 22

Apêndice A – Código fonte da classe ObjDef.java .. 23

Apêndice B – Código fonte da classe Object3D.java 26

Apêndice C – Código fonte da classe Environment.java 29

Apêndice D – Código fonte da classe Lamina.java 36

Apêndice E – Código fonte da classe LaminaSozinha.java 37

1

1. Introdução

A Realidade Virtual é muito empregada no treinamento de profissionais

de diversas áreas, Na área médica, os sistemas vêm conquistando seu espaço

no tratamento de algumas patologias e simulação de procedimentos.

O ViMeT (Virtual Medical Training) é um framework em

desenvolvimento, voltado para o treinamento médico, mais especificamente, ao

treinamento de exames de biópsia. Permite a criação de um ambiente virtual

com objetos virtuais representando um órgão humano e um instrumento

médico, como uma seringa. As aplicações por ele geradas podem ser

controladas utilizando equipamentos convencionais (teclado e mouse) ou

equipamentos não convencionais (dispositivo háptico e luva de dados). O

presente projeto visa a contribuir com o desenvolvimento do referido

framework, conforme apresentado a seguir.

 1.1 Objetivos

O principal objetivo deste trabalho é aperfeiçoar o realismo do framework

ViMeT (Virtual Medical Training). Para tanto, está dividido em 4 objetivos

específicos:

 Estudar e implementar o uso de texturas e sombras nos objetos 3D que

representam órgãos humanos.

 Melhorar o desempenho de um método de deformação já implementado,

fazendo com que um objeto flexível que representa um órgão humano

volte ao seu estado inicial após a deformação.

 Implementar a característica de relevo no procedimento de deformação,

por meio de reposicionamento de vértices do objeto 3D.

 Alterar o framework ViMeT para incluir a finalização dos exames de

biópsia, simulando o depósito do material coletado em uma lâmina

virtual.

2

 1.2 Justificativa

Os simuladores de RV oferecem inúmeras vantagens se comparados

com os métodos tradicionais de ensino e treinamento, principalmente na

medicina, como a possibilidade de repetir o procedimento quantas vezes forem

necessárias, aumentando assim a experiência do profissional, a minimização

da necessidade de se utilizar cadáveres e/ou animais vivos, a possibilidade de

visualizar e gravar todos os procedimentos realizados a fim de melhorar as

técnicas empregadas ou simplesmente para posterior estudo, a possibilidade

de se configurar qualquer situação real, dependendo dos objetivos do docente,

entre outras (MONSERRAT et al., 2003).

No entanto, de forma a maximizar o aprendizado, devemos primar pelo

realismo desses simuladores. Tendo em vista esse objetivo, este projeto visa

contribuir tanto com a área médica quanto com a área de desenvolvimento de

sistemas (Sistemas de Informação), uma vez que para realizar este projeto

serão necessários conhecimentos técnicos de programação, que podem ser

usados inclusive para ensino de engenharia de software, banco de dados,

realidade virtual, programação, entre outros.

 1.3 Disposição do Trabalho

Este trabalho está dividido da seguinte forma, além desta Introdução:

Seção 2. Desenvolvimento do Projeto: traz as atividades realizadas e o

cronograma de execução.

Seção 3. Conclusões: apresenta as conclusões obtidas após o término do

projeto.

Seção 4. Referências: traz a relação da leitura base deste projeto.

Apêndice: apresenta os códigos fontes das classes modificadas e criadas.

3

 2. Desenvolvimento do Projeto

Nesta seção são apresentadas as implementações efetuadas e os

resultados obtidos (divididos em três partes: Textura, Sombra e Lâmina),

juntamente com o cronograma de execução deste projeto.

Após estudo das classes que compõem o ViMeT, ficou decidido que para

incrementar realismo, seria necessário modificar a classe Environment,

responsável pela criação do ambiente 3D. O diagrama de classes do ViMeT

pode ser visto na Figura 1. Nele, é possível observar todas as classes que

compõem o framework, assim como os relacionamentos existentes com a

classe Environment. A Figura 2 mostra a representação da classe Environment,

que contém sete métodos, a saber:

 Environment: construtor responsável pela criação do AV em si (nó

Locale, etc).

 setEyeOffset: responsável por setar a distância da “visão” utilizada na

estereoscopia.

 buildViewBranch: responsável pela criação do nó que estabelece a

posição e visualização do ambiente.

 add: responsável por adicionar os objetos modelados ao Universo

Virtual.

 add2: responsável por adicionar os objetos modelados ao Universo

Virtual.

 add3: responsável por adicionar os objetos modelados ao Universo

Virtual.

 addGrafo: adiciona o grafo de cena no nó Locale.

4

Figura 1 – Diagrama de classes do ViMeT

Figura 2 – Diagrama de classes da classe Environment.

Durante a instalação do ViMeT, foi utilizado o Manual de Instanciação do

Framework ViMeT (OLIVEIRA, 2007). Primeiramente, foi instalado o banco de

dados Derby. Para tanto, foi necessário configurar as variáveis de ambiente

DERBY_HOME, CLASSPATH e Path. Após a instalação do banco de dados,

5

foi executada a classe Wizard, responsável pela interface gráfica (Figura 3) e

instanciação do ViMeT.

Figura 3 – Interface da Wizard.

Em seguida, decidiu-se retomar a pesquisa bibliográfica, a fim de

verificar como poderia ser implementado realismo nos objetos 3D. Dois

aspectos foram selecionados para abordagem inicial: sombra e textura.

 2.1 Textura

Conforme foi citado anteriormente, a aplicação de textura é muito

importante quando falamos de RV, principalmente em aplicações na área

médica. Quando falamos sobre o Virtual Medical Training (ViMeT), a situação

não é diferente.

 No teste de textura, foi utilizada uma imagem no formato “jpeg”, com

dimensões 128 x 128 pixels. Essa imagem foi obtida da seguinte forma:

primeiramente, foi tirada uma foto bem próxima da pele. Logo após, a foto foi

recortada e ampliada (Figura 4).

6

Figura 4 – Foto de pele humana ampliada

Originalmente, a mama era apresentada no modo wireframe (linhas),

sem nenhuma textura (Figura 5).

Figura 5 – Execução do ViMeT - wireframe

Para acrescentar textura na mama, foi necessária uma pequena

modificação em outras duas classes do ViMeT (ObjDef e Object3D), além da

classe que já estava prevista (Environment). A alteração dessas duas classes

surgiu após a constatação de um problema: quando a textura foi colocada com

êxito, ela era aplicada em todos os objetos do AV (o órgão humano e a

seringa).

7

Na classe Object3D foi criada uma variável booleana chamada ehOrgao
(que indica se o objeto que está sendo carregado é um órgão ou uma seringa)
e um método chamado podeSerOrgao() (que retorna o valor da variável
booleana).(Figura 6)

Figura 6 – Trecho de código da classe Object3D

A classe ObjDef (subclasse de Object3D) possui os métodos de
carregamento e funcionalidades do objeto modelado que simula um órgão
(objeto deformável). Um dos construtores dessa classe (ObjDef(String nome,
int modo, int modoObjectFile)), carrega o órgão. Se o órgão for carregado com
sucesso, a variável ehOrgao se torna true (Figura 7).

Figura 7 – Trecho de código da classe ObjDef.

Por último, na classe Environment, no método add(Object obj), foi
incluído o IF abaixo (Figura 8).

8

Figura 8 – Trecho de código da classe Environment.

Se o órgão humano for carregado com sucesso (ehOrgao = true), a
textura é aplicada, caso contrário, não é aplicada nenhuma textura (válido
quando a Wizard carrega a seringa). O resultado do órgão com a textura já
aplicada pode ser visto na Figura 9.

Figura 9 – Execução do ViMeT – textura

 É possível observar que o resultado desta textura não atingiu o nível de

realismo almejado, porém um passo foi dado nesse sentido.

É importante ressaltar que o ViMeT pode gerar aplicações com vários

outros órgãos além da mama apresentada nesse projeto. A Figura 10

exemplifica o ViMeT rodando um glúteo (modo wireframe). A Figura 11 mostra

um comparativo desse mesmo glúteo no modo wireframe e o modo com a

textura citada anteriormente.

9

Figura 10 – ViMeT – glúteos (wireframe)

Figura 11 – Comparativo wireframe/textura

A seguir, será apresentado o trabalho com sombras e os resultados no

aumento do realismo.

10

 2.2 Sombra

O fator sombra também é muito importante em uma aplicação de RV, pois

uma de suas funções é propiciar a sensação de profundidade.

Para se obter êxito com o efeito de sombra, pode-se trabalhar com a

iluminação do ambiente. A API Java3D disponibiliza 4 tipos de iluminação (Sun,

2009):

 AmbientLight: os raios de luz apontam em todas as direções, inundando

o ambiente e iluminando todas as formas equilibradamente. (Figura 12)

 DirectionalLight: os raios de luz são paralelos e apontam em uma única

direção. (Figura 14)

 PointLight: os raios de luz são emitidos radialmente a partir de um ponto,

em todas as direções. (Figura 16)

 SpotLight: os raios de luz são emitidos radialmente a partir de um ponto,

na forma de um “cone”. (Figura 18)

A seguir, os resultados obtidos em cada um dos testes:

Teste 1: AmbientLight

Figura 12 – Execução do ViMeT – AmbientLight

11

Não há muito o que comentar sobre esse teste, uma vez que o

AmbientLight é a iluminação padrão do ViMeT. Podemos notar mais facilmente

o efeito deste e os próximos testes se observarmos a seringa. A Figura 13

apresenta o código utilizado.

Figura 13 – Trecho de código do AmbientLight

Teste 2: DirectionalLight

Figura 14 – Execução do ViMeT – DirectionalLight

Mais uma vez, pode-se observar na seringa o efeito da sombra (o raio

de luz segue da esquerda para a direita), embora ainda não seja perceptível

nenhuma mudança na mama. A Figura 15 apresenta o código utilizado.

12

Figura 15 – Trecho de código do DirectionalLight.

Teste 3: PointLight

Figura 16 – Execução do ViMeT – PointLight

Talvez um dos piores resultados, não importando os valores utilizados,

sempre tem-se a impressão de que a mama está irradiando luz ao redor.

Notamos que a seringa fica encoberta pelas sombras em quase todas as

posições. A Figura 17 apresenta o código utilizado.

13

Figura 17 – Trecho de código do PointLight

Teste 4: SpotLight

Figura 18 – Execução do ViMeT – SpotLight

Semelhante ao PointLight, a impressão de que a mama é o centro da luz

continua. Juntamente com o teste 3, este foi um dos piores resultados. A Figura

19 apresenta o código utilizado.

14

Figura 19 – Trecho de código do SpotLight.

Ao final dos 4 testes, podemos notar que a mama não mostrou

alterações significativas de sombra (como foi proposto na seção 1.1 Objetivos),

em nenhum dos testes. Porém, é notável as mudanças ocorridas na seringa,

destacando-se o 2º teste, com o DirectionalLight.

O código fonte das classes ObjDef,Object3D e Environment podem ser

encontrados nos apêndices A, B e C, respectivamente.

 2.3 Lâmina

Conforme apresentado na seção 1.1 Objetivos, um dos objetivos

propostos foi alterar o framework ViMeT para incluir a finalização dos exames

de biópsia, simulando o depósito do material coletado em uma lâmina virtual.

Infelizmente não foi possível concluir totalmente esse objetivo (ver seção 2.4

Cronograma). No entanto, apresentamos aqui a criação da lâmina e sua

inserção no ViMeT.

O objeto que representa a lâmina foi criado usando uma das formas

geométricas já presentes na API Java3D, o Box. Foram realizados dois testes

para a criação da lâmina, um com textura e o outro com atributos de

transparência.

A textura aplicada na lâmina é semelhante à textura aplicada na mama:

uma imagem no formato “jpeg”, com dimensões de 128x128 pixels, obtida a

partir de uma fotografia de uma lâmina de vidro real, posteriormente ampliada

(Figura 20).

15

Figura 20 – Foto de uma lâmina de vidro ampliada.

A textura foi aplicada através do código da Figura 21.

Figura 21 – Trecho de código da textura na lâmina.

A Figura 22 exemplifica o resultado da lâmina com textura. A Figura 23

mostra a mesma lâmina inserida no ViMeT, juntamente com a mama e a

seringa.

Figura 22 – Lâmina com textura.

16

Figura 23 – ViMeT com lâmina.

Como podemos observar, a aplicação da textura teve um efeito bom,

porém não atingiu o nível de realismo desejado.

O segundo teste, sem textura, e com transparência (Figura 24), foi

obtido com a inclusão do código da Figura 25. Na Figura 26, vemos a lâmina

transparente inserida no ViMeT.

Figura 24 – Lâmina Transparente.

17

Figura 25 – Trecho de código da transparência.

Figura 26 – ViMeT com lâmina.

Como podemos observar, a transparência obteve um nível de realismo

maior do que a aplicação de textura, embora possa ainda ser melhorado.

O código fonte da classe Lamina e uma variação desta criada para gerar

as Figuras 22 e 24, podem ser encontrados nos Apêndices D e E,

respectivamente.

18

 2.4 Cronograma

A Figura 27 representa o cronograma de execução do projeto, dividido

em 8 etapas distintas.

Atividades

Meses

1 2 3 4 5 6 7 8 9 10 11 12

1. estudo do framework ViMeT

2. revisão bibliográfica

3. implementação de realismo dos objetos 3D
4. implementação de parâmetros físicos dos
tecidos humanos considerados

5. elaboração do relatório parcial
6. implementação da finalização do exame de
biópsia

7. execução de testes

8. elaboração e confecção do relatório final

 Etapa cumprida

 Etapa parcialmente cumprida

 Etapa não cumprida

Figura 27 – Cronograma de execução do projeto

Como pôde ser observado na Figura 27, algumas etapas que deveriam

ter sido concluídas não o foram. Isso se deve a alguns fatos, a saber:

1. Foi refeito o site do grupo de pesquisa LApiS (Laboratório de Aplicação

de Informática em Saúde), onde estão armazenados dados sobre outros

projetos conduzidos pela Prof. Dra. Fátima L. S. Nunes Marques. O site

foi refeito para que os resultados do Ensinar Com Pesquisa sejam

disponibilizados como material didático, conforme previsto nos objetivos

do Programa. Desta forma, um tempo considerável do cronograma foi

gasto nessa tarefa. Posteriormente este projeto será incluso no website.

Para maiores informações, acesse <http://each.uspnet.usp.br/lapis/ >.

(Figura 28)

2. No início do projeto, não tínhamos um laboratório montado ainda e,

portanto, nos dedicamos mais à pesquisa bibliográfica.

3. A etapa 6 não pôde ser concluída uma vez que o tempo se mostrou

insuficiente. Os resultados obtidos (inclusão da lâmina no ViMeT e os

http://each.uspnet.usp.br/lapis/

19

testes de textura e transparência) foram apresentados na seção 2.3

Lâmina.

Figura 28 – Página inicial do website do LApiS.

 3. Conclusões

Após o término do projeto, ficou claro que a Realidade Virtual tem muito

a oferecer à sociedade em geral, seja na educação, através do ensino e

treinamento de profissionais de diversas áreas, ou como forma de tratamento

para diversas patologias, como o medo de altura, ou o medo de andar de

avião.

Podemos enfatizar a importância do ViMeT como meio educador da área

médica, assim como sua capacidade de proporcionar um treinamento mais

eficaz ao usuário. Nota-se também, que o fator realismo utilizado ainda deixa a

desejar, porém é preciso trabalhar este aspecto o melhor possível, visando

aumentar a qualidade do ensino por ele proporcionado e contribuir ainda mais

com a sociedade de um modo geral.

20

Com relação à aprendizagem proporcionada, é necessário ressaltar sua

importância, uma vez que ao se pesquisar sobre determinado assunto,

acontece um aprofundamento no tema e assimilação de conceitos a ele

relacionados. No caso desse projeto, foi pesquisado a fundo tanto Realidade

Virtual - que abrange não só a Medicina (através do desenvolvimento de

simuladores cirúrgicos ou para tratamento de fobias), mas muitas outras áreas,

como por exemplo, a Arquitetura - quanto à linguagem Java, uma das

linguagens fundamentais no curso de Sistemas de Informação. Vários

conhecimentos foram adquiridos durante o estudo sobre Java3D,

principalmente no que diz respeito à criação da classe Lâmina, que permitiu

serem realizados vários testes, pesquisas e, por consequência, proporcionou

um grande ganho no aprendizado, enfatizando uma das propostas do Ensinar

Com Pesquisa: o desenvolvimento do conhecimento no campo do ensino de

graduação. Além disso, foi adquirido um conhecimento um pouco mais amplo

sobre o prompt de comando, durante a instalação do banco de dados Derby,

utilizado pelo ViMeT.

 4. Referências

BORSHUKOV, G.; LEWIS, J. P. Realistic human face rendering for "The

Matrix Reloaded". In: ACM SIGGRAPH 2003 Sketches &Amp; Applications

(San Diego, California, July 27 - 31, 2003). SIGGRAPH '03. ACM, New York,

NY, 1-1. Disponível em: < http://doi.acm.org/10.1145/965400.965470 >. Acesso

em: 20 junho 2009

CORRÊA, C. G. Implementação e Avaliação de Interação em um

Framework para Treinamento Médico. Dissertação (Mestrado em Ciência

da Computação) – Centro Universitário Eurípides de Marília. Fundação de

Ensino Eurípides Soares da Rocha, Marília, 2008.

GOVINDARAJU, K. N. et al. Interactive Shadow Generation in Complex

Environments. 2003. Disponível em:

<http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=

47461996&CFTOKEN=51403354 >. Acesso em: 01 junho 2009

GOH, K. Y. C.. Virtual Reality Applications in Neurosurgery. In: Engineering

in Medicine and Biology Annual Conference, 27., 2005, Shanghai.
Proceedings… p. 4171-4173. Disponível em:

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1615383>.Acesso em:
26 julho 2009

LONDON, J.; GEHRINGER M. Odisséia Digital. São Paulo: Abril, 2001

http://doi.acm.org/10.1145/965400.965470
http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=47461996&CFTOKEN=51403354
http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=47461996&CFTOKEN=51403354
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1615383

21

LEEB, V. et al., Interactive Texturing by Polyhedron Decomposition, 2001.

In: Proceedings of the Virtual Reality 2001 Conference (VRí01). Disponível em:

< http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00913783 >.Disponível em:

10 abril 2009

 MONTERO, E. F. de S.; ZANCHET, D. J. Realidade virtual e a medicina.

Acta Cir. Bras., São Paulo, v. 18, n. 5, Outubro. 2003. Disponível em:

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-

86502003000500017&lng=en&nrm=iso .Acesso em: 21 jul. 2009.

MONSERRAT, C.; ALCAÑIZ, M.; ULLRICH, M.; POZA, JL.; JUAN, MC.; GRAU,
V.Simulador para el entrenamiento en cirugías avanzadas.Actas XII
congreso internacional de ingeniería gráfica (ISBN: 84-8448-008-9). Disponível
em: < http://www.dsic.upv.es/~cmonserr/ Articulos/AA028.pdf >. Acesso em:
08 julho 2009.

MONTEIRO, B. Videogame Medicinal. São Paulo: Globo, 2008. Disponível

em:< http://revistaepoca.globo.com/Revista/Epoca/0,,EDG66871-6014,00-

VIDEOGAME+MEDICINAL.html >. Acesso em: 15 junho 2009

NUNES, F. L. S.; OLIVEIRA, A. C. M. T. G. ; ROSSATO, D. J.; MACHADO, M.

I. C. ViMeTWizard: Uma ferramenta para instanciação de um framework de

Realidade Virtual para treinamento médico. In: XXXIII Conferencia

Latinoamericana de Informática, 2007, San José. Proceedings of XXXIII

Conferencia Latinoamericana de Informática, 2007. v. 1. p. 1-8.

OLIVEIRA, A. C. M. T. G.; NUNES, F. L. S. Building a Virtual Medical

Training (ViMeT) open source framework. Journal of Digital Imaging, 2009.

OLIVEIRA, A. C. M. T. G. ViMeT – Projeto e Implementação de um

framework para aplicações de treinamento médico usando realidade

virtual. Dissertação (Mestrado em Ciência da Computação) – Centro

Universitário Eurípides de Marília, Fundação de Ensino Eurípides Soares da

Rocha, Marília, 2007.

OLIVEIRA, A. C. M. T. G. Cookbook Manual de Instanciação do Framework

ViMeT., 2007.

SANNIER, G.; MAGNENAT THALMANN, N.. A user-friendly texture-fitting

methodology for virtual humans. 1997. Disponível em:

<http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=

47461996&CFTOKEN=51403354>. Acesso em: 27 maio 2009

SOWIZRAL, H. et al., The Java 3D API Specification, Second Edition, 2000.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00913783
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502003000500017&lng=en&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-86502003000500017&lng=en&nrm=iso
http://revistaepoca.globo.com/Revista/Epoca/0,,EDG66871-6014,00-VIDEOGAME+MEDICINAL.html
http://revistaepoca.globo.com/Revista/Epoca/0,,EDG66871-6014,00-VIDEOGAME+MEDICINAL.html
http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=47461996&CFTOKEN=51403354
http://portal.acm.org/citation.cfm?id=1201775.882299&coll=Portal&dl=GUIDE&CFID=47461996&CFTOKEN=51403354

22

SUDARSKY, S. Generating Dynamic Shadows for Virtual Reality

Applications, 2001. Disponível em:

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=942116>. Acesso em: 11

junho 2009

SUN. Disponível em: < http://java.sun.com/javase/technologies/desktop/java3d/

>. Acesso em: 19 agosto 2009

VRML. The Virtual Reality Modeling Language, International standard-
ISO/IEC/ 14772- 1 : 1997

YESIL, M.S.; GUDUKBAY, U. Realistic Rendering and Animation of a Multi-

Layered Human Body Model, Information Visualization, 2006. IV 2006. Tenth

International Conference on , vol., no., pp.785-790, 5-7 Julho 2006. Disponível

em: <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1648349&isnumber=3455

9>. Acesso em: 22 abril 2009

 Apêndice

Esta seção apresenta os códigos fontes das classes que foram modificadas

e/ou criadas. Um total de 5 classes são aqui apresentadas, numeradas de A

até E.

Os apêndices A, B e C mostram o código de classes que já existiam no

ViMeT, que sofreram algumas alterações.

O apêndice D mostra o código da classe Lamina, que foi criada e inserida

no ViMeT.

O apêndice E mostra uma variação da classe Lamina, feita especialmente

para a criação das Figuras 22 e 24.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=942116
http://java.sun.com/javase/technologies/desktop/java3d/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1648349&isnumber=34559
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1648349&isnumber=34559

23

Apêndice A – Código fonte da classe ObjDef.java

package ViMeT;
import com.sun.j3d.loaders.objectfile.ObjectFile;
import javax.swing.*;
import java.awt.GraphicsConfiguration;
import java.awt.*;
import java.awt.event.*;
import javax.media.j3d.*;
import javax.media.j3d.Node;
import javax.vecmath.*;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.behaviors.vp.*;
import com.sun.j3d.utils.behaviors.*;
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.event.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.behaviors.keyboard.*;
import com.sun.j3d.utils.picking.PickTool;
import javax.swing.*;
import com.sun.j3d.utils.behaviors.mouse.*;
import java.awt.TextArea;
import com.sun.j3d.loaders.Scene;

/**
* Possui os métodos de carregamento,
* funcionalidades do objeto modelado que simula um órgão (objeto deformável)
* @version 15.1 - fev 2007
* @author Ana Cláudia M. T. G. de Oliveira
*/
public class ObjDef extends Object3D{

 Collision cd;
 Deformation def;
 Shape3D shapeMama;
 ViMeT.DefApliMedLoader.ObjectFile objFileloader;
 Shape3D shape2;

/**
*
* @param nome caminho do obejto que simula um órgão humano (objeto deformável).
* @param modo indica quais funcionalidades o objeto possui.
*/
 public ObjDef(String nome, int modo) {
 this(nome,modo,0);
 }
/**
*
* @param nome caminho do obejto que simula um órgão humano (objeto deformável).

24

* @param modo indica quais funcionalidades o objeto possui.
* @param modoObjectFile indica qual é o modo de carregamento que será utilizado
pela ObjectFile.
*/
 public ObjDef(String nome, int modo, int modoObjectFile) {
 Scene mama = null;
 objFileloader = new ViMeT.DefApliMedLoader.ObjectFile(modoObjectFile);

 try {
 mama = objFileloader.load(nome);
 ehOrgao = true;
 } catch (Exception e) {
 mama = null;
 System.err.println(e);
 }

 shapeMama = (Shape3D) objFileloader;

 shapeMama.setCapability(Shape3D.ALLOW_LOCAL_TO_VWORLD_READ);
 shapeMama.setCapability(Shape3D.ALLOW_GEOMETRY_READ);
 shapeMama.setCapability(Shape3D.ALLOW_COLLISION_BOUNDS_WRITE);
 shapeMama.setCapability(Shape3D.ALLOW_BOUNDS_READ);
 shapeMama.setCapability(Shape3D.ALLOW_BOUNDS_WRITE);

 shapeMama.getGeometry().setCapability(GeometryArray.ALLOW_FORMAT_READ);
 shapeMama.getGeometry().setCapability(GeometryArray.ALLOW_COUNT_READ);

shapeMama.getGeometry().setCapability(GeometryArray.ALLOW_REF_DATA_READ)
;

 if ((modo&STEREOSCOPY)!=0){
 shape2 = new Shape3D(shapeMama.getGeometry());
 shape2.setCapability(Shape3D.ALLOW_LOCAL_TO_VWORLD_READ);
 shape2.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);
 }

 if ((modo&DEFORMATION)!=0){
 if ((modo&STEREOSCOPY)!=0) {
 def = new MassSpring(objFileloader,shape2);
 }
 else{
 def = new MassSpring(objFileloader);
 }
 }

 if (((modo&0x07)==COLLISION)||((modo&0x07)==OCTREE)){
 BoundingBox bounds = new BoundingBox();
 cd = new Octree(shapeMama);
 cd.setSchedulingBounds(bounds);
 }
 else if ((modo&0x07)==CJAVA){
 BoundingBox bounds = new BoundingBox();
 cd = new CollisionJava(shapeMama);
 cd.setSchedulingBounds(bounds);
 }

25

}

/**
*
* Retorna o método de deformação associado a esta classe.
*/
 public Deformation getDeformation()
 {
 return def;
 }

/**
*
* Retorna o método de colisão associado a esta classe.
*/
 public Collision getCollisionDetector()
 {
 return cd;
 }

/**
*
* Retorna o Shape3D que representa o objeto deformável.
*/
 public Shape3D getShape()
 {
 return shapeMama;
 }

/**
*
* Retorna uma cópia do Shape3D que representa o objeto deformável, utilizado no
caso de estereoscopia.
*/
 public Shape3D getStereoShape() throws Exception {
 if (shape2 == null) {
 throw new Exception ("no Estereo Shape");
 }
 else{
 return shape2;
 }
 }
}

26

 Apêndice B – Código fonte da classe Object3D.java

package ViMeT;
import javax.media.j3d.*;
import javax.vecmath.*;

/**
* Possui os atributos referentes as funcionalidades existentes, o método para adicionar
os objetos no MyLocale e
* os métodos responsáveis pela transformações (escala, translação e rotação) nos
objetos modelados que fazem parte do AV.
* @version 15.1 - fev 2007
* @author Ana Cláudia M. T. G. de Oliveira
*/
public abstract class Object3D {

 public static final int COLLISION = 0x01;
 public static final int OCTREE = 0x01;
 public static final int CJAVA = 0x03;

 public static final int DEFORMATION = 0x08;
 public static final int MASS_SPRING = 0x08;
 public static final int FEM = 0x018;

 public static final int STEREOSCOPY = 0x040;

 public Object3D() {
 }

 public abstract Shape3D getShape();
 public TransformGroup mTg, tg;
 private BranchGroup bg;

public boolean ehOrgao = false;

public boolean podeSerOrgao(){
 return ehOrgao;
 }

/**
* Método utilizado pela classe Environment para indicar o BranchGroup onde está
localizado o Shape3D que representa este objeto.
*
*/
 public void setBranchGroup(BranchGroup bg){
 this.bg = bg;
 }

/**
* Método utilizado pela classe Environment para retorna o BranchGroup onde está
localizado o Shape3D que representa este objeto.
*
*/

27

 public BranchGroup getBranchGroup() {
 return bg;
 }

/**
* Método utilizado para definir uma transformação para a movimentação do objeto.
*
*/
 public void setMotionTransform(TransformGroup tg){
 mTg = tg;
 }

/**
* Método que retorna a transformação para a movimentação do objeto.
*
*/
 public TransformGroup getMotionTransform(){
 return mTg;
 }

/**
* Método que indica qual é o TransformGroup que possui os parâmetros de
posicionamento do objeto.
*
*/
 public void setTransformGroup(TransformGroup tg){
 this.tg = tg;
 }

/**
* Método define os parâmetros da escala para o objeto.
*
*/
 public void setScale(Vector3d s){
 Transform3D t3D = new Transform3D();
 tg.getTransform(t3D);
 t3D.setScale(s);
 tg.setTransform(t3D);
 }

/**
* Método define os parâmetros da translação para o objeto.
*
*/
 public void setTranslation(Vector3d t){
 Transform3D t3D = new Transform3D();
 tg.getTransform(t3D);
 t3D.setTranslation(t);
 tg.setTransform(t3D);
 }

/**
* Método define os parâmetros de rotação para o objeto.
*
*/

28

 public void setRotation(AxisAngle4d r){
 Transform3D t3D = new Transform3D();
 tg.getTransform(t3D);
 t3D.setRotation(r);
 tg.setTransform(t3D);
 }

/**
* Método remove um BranchGroup do MyLocale.
*
*/
 public void removeMe(){
 bg.detach();
 }
}

29

Apêndice C – Código fonte da classe Environment.java

package ViMeT;
import ViMeT.DefApliMedLoader.ObjectFile;
import javax.swing.*;
import java.awt.GraphicsConfiguration;
import java.awt.*;
import java.awt.event.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.behaviors.vp.*;
import com.sun.j3d.utils.behaviors.*;
import java.awt.event.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.behaviors.keyboard.*;
import com.sun.j3d.utils.picking.PickTool;
import javax.swing.*;
import com.sun.j3d.utils.behaviors.mouse.*;
import java.awt.TextArea;
import com.sun.j3d.utils.image.TextureLoader;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.awt.image.*;
import java.awt.*;

import com.sun.j3d.loaders.Scene;
import com.sun.j3d.loaders.SceneBase;
import com.sun.j3d.loaders.Loader;
import com.sun.j3d.loaders.IncorrectFormatException;
import com.sun.j3d.loaders.ParsingErrorException;
import com.sun.j3d.utils.geometry.GeometryInfo;
import com.sun.j3d.utils.geometry.NormalGenerator;
import com.sun.j3d.utils.geometry.Stripifier;
import java.io.FileNotFoundException;
import java.io.StreamTokenizer;
import java.io.Reader;
import java.io.BufferedReader;
import java.io.BufferedInputStream;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.HashMap;
import java.util.StringTokenizer;
import javax.media.j3d.*;
import javax.vecmath.Color3f;
import javax.vecmath.Point3f;

30

import javax.vecmath.*;
import javax.vecmath.TexCoord2f;
import java.net.MalformedURLException;
import javax.swing.*;
import java.awt.*;
import java.awt.Toolkit;
import com.sun.j3d.utils.image.TextureLoader;
import com.sun.j3d.utils.image.*;
import java.awt.image.BufferedImage;
import java.awt.image.*;

/**
 * Classe responsável pela criação do Ambiente Virtual
 *
 * @version 15.1 - fev 2007
 * @author Ana Cláudia M. T. G. de Oliveira
 */
public class Environment extends VirtualUniverse {

 /**
 * Determina a distancia entre os olhos do observador
 */
 protected float eyeOffset =0.017F;

 private Collision collision;

 Canvas3D myCanvas;

 public Locale myLocale;

 BranchGroup light;

 AmbientLight ambientLightNode;

 BranchGroup branchLamina;

 JFrame window;

 /**
 * Habilita a estereoscopia
 */
 private boolean stereoEnabled;

 /**
 * Método responsável setar a distância intraocular, utilizada na estereoscopia
 *
 *
 * @param f valor da utiizado para a paralaxe
 * default 0.017
 */
 public void setEyeOffset(float f){
 eyeOffset = f;
 }

 /**

31

 * Construtor responsável pela criação dos nós Locale e todos os BranchGroup e
*TransformGroup
 * BranchdGroup: light (responsável pela iluminação do AV); brbg (responsável pelo
background do AV);
 * leaf: DirectionalLight e AmbientLight
 *
 *
 * @param c Canvas3D utilizado
 * @param stereoEnabled Se a estereoscopia está ligada ou não.
 */
 public Environment(Canvas3D c, boolean stereoEnabled){

 this.stereoEnabled = stereoEnabled;

 myLocale = new Locale(this);
 //adicionando ao nó Locale um BranchGroup de visualização e posição
 myLocale.addBranchGraph(buildViewBranch(c));

 light = new BranchGroup();
 BoundingSphere boundsl = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

 Color3f ambientColor = new Color3f(1.0f, 1.0f, 1.0f);
 ambientLightNode = new AmbientLight(ambientColor);
 ambientLightNode.setInfluencingBounds(boundsl);
 light.addChild(ambientLightNode);

 myLocale.addBranchGraph(light);

 branchLamina = new BranchGroup();

 Lamina.criaLamina(0.3f, 0.005f, 0.1f);

 Transform3D trans = new Transform3D();
 trans.setTranslation(new Vector3f(0.4f, -0.3f, 0f));
 trans.setRotation(new AxisAngle4d(2,2,1,5));

 TransformGroup transLam = new TransformGroup(trans);
 transLam.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 transLam.addChild(Lamina.lamina);

 branchLamina.addChild(transLam);

 myLocale.addBranchGraph(branchLamina);

//////////////Insere o Background na Cena

 if(!stereoEnabled){
 BranchGroup brbg = new BranchGroup();
 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100);
 Color3f bgColor= new Color3f(1.0f, 1.0f , 1.0f);
 Background bg= new Background(bgColor);
 bg.setApplicationBounds(bounds);
 brbg.addChild(bg);
 myLocale.addBranchGraph(brbg);
 }

32

 }

// Método que cria o nó p/ visualização e posicionamento do ambiente
 /**
 * Método responsábel pelo subgrafo de visualização
 * BranchdGroup: viewBranch estão ligados todos os nós referentes ao subgrafo de
visualização.
 *
 *
 *
 * @param c Canvas3D utilizado
 *
 */
 private BranchGroup buildViewBranch(Canvas3D c){
 BranchGroup viewBranch = new BranchGroup();
 Transform3D viewXfm = new Transform3D();
 viewXfm.set(new Vector3f(0.0f, 0.0f, 2.0f));

 TransformGroup viewXfmGroup = new TransformGroup(viewXfm);
 viewXfmGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 viewXfmGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 BoundingSphere movingBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
100);
 BoundingLeaf boundLeaf = new BoundingLeaf(movingBounds);

 /* Cria um objeto ViewPlataforma*/
 ViewPlatform myViewPlatform = new ViewPlatform();
 viewXfmGroup.addChild(boundLeaf);

 PhysicalBody myBody = new PhysicalBody();
 PhysicalEnvironment myEnvironment = new PhysicalEnvironment();
 viewXfmGroup.addChild(myViewPlatform);
 viewBranch.addChild(viewXfmGroup);

 /* Cria um objeto View*/
 View myView = new View();
 myView.addCanvas3D(c);
 myView.attachViewPlatform(myViewPlatform);
 myView.setPhysicalBody(myBody);
 myView.setPhysicalEnvironment(myEnvironment);

 KeyNavigatorBehavior keyNav = new KeyNavigatorBehavior(viewXfmGroup);
 keyNav.setSchedulingBounds(movingBounds);
 viewBranch.addChild(keyNav);

 MouseRotate rNav = new MouseRotate(viewXfmGroup);
 rNav.setSchedulingBounds(movingBounds);

 MouseTranslate tNav = new MouseTranslate(viewXfmGroup);
 tNav.setSchedulingBounds(movingBounds);

 return viewBranch;
 }

 /**

33

 * Método responsável pela adição dos objetos modelados no Universo Virtual
 * @param obj
 * @see Object3D
 */
 public void add(Object3D obj){
 BranchGroup bg = obj.getBranchGroup();
 if (bg==null){
 bg = new BranchGroup();

 bg.setCapability(BranchGroup.ALLOW_DETACH);

 TransformGroup tgM = new TransformGroup();
 TransformGroup tg = new TransformGroup();

 tgM.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 tgM.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 obj.setMotionTransform(tgM);
 obj.setTransformGroup(tg);
 obj.setBranchGroup(bg);

 bg.addChild(tgM);
 tgM.addChild(tg);

 if(stereoEnabled){
 Transform3D myTrans1 = new Transform3D();
 myTrans1.setTranslation(new Vector3f(eyeOffset, -eyeOffset, 0F));
 TransformGroup tg1 = new TransformGroup(myTrans1);

 Transform3D myTrans2 = new Transform3D();
 myTrans2.setTranslation(new Vector3f(-eyeOffset, +eyeOffset, 0F));
 TransformGroup tg2 = new TransformGroup(myTrans2);

 tg.addChild(tg1);
 tg.addChild(tg2);

 Appearance ap = new Appearance();
 Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
 Color3f red = new Color3f(0.7f, .0f, .15f);
 Color3f green = new Color3f(0f, .15f, .7f);
 ap.setMaterial(new Material(green,black, green, black, 1.0f));

 //textura na mama
 if(obj.podeSerOrgao() == true){

 TextureLoader loader = new TextureLoader("peleTeste.jpg", null);
 ImageComponent2D image = loader.getImage();

 Texture2D texture = new Texture2D
(Texture.BASE_LEVEL,Texture.RGBA,image.getWidth(),image.getHeight());
 texture.setImage(0, image);
 texture.setEnable(true);

34

 ap.setTexture(texture);
 }
 //fim da textura na mama

 Appearance ap2 = new Appearance();
 ap2.setMaterial(new Material(red, black, red, black, 1.0f));
 float transparencyValue = 0.5f;
 TransparencyAttributes t_attr =
 new TransparencyAttributes(
 TransparencyAttributes.BLENDED,
 transparencyValue,
 TransparencyAttributes.BLEND_SRC_ALPHA,
 TransparencyAttributes.BLEND_ONE);
 ap2.setTransparencyAttributes(t_attr);
 ap2.setRenderingAttributes(new RenderingAttributes());
 //ap.setTransparencyAttributes(t_attr);
 ap.setRenderingAttributes(new RenderingAttributes());

 //
 PolygonAttributes attributes11 = new PolygonAttributes();
 attributes11.setPolygonMode(PolygonAttributes.POLYGON_LINE);
 attributes11.setCullFace(PolygonAttributes.CULL_BACK);
 ap2.setPolygonAttributes(attributes11);
 // ap.setPolygonAttributes(attributes11);
 //

 Shape3D shape = obj.getShape();

 shape.setAppearance(ap);
 tg1.addChild(shape);

 Shape3D shape2;
 if (obj instanceof ObjDef) {
 try{
 shape2 = ((ObjDef)obj).getStereoShape();
 shape2.setCollidable(false);
 shape2.setAppearance(ap);
 tg2.addChild(shape2);
 }
 catch(Exception e){
 System.out.println("erro: " + e.getMessage());
 }
 }
 else{
 shape2 = new Shape3D(shape.getGeometry(),ap);
 shape2.setCapability(Shape3D.ALLOW_LOCAL_TO_VWORLD_READ);
 tg2.addChild(shape2);
 }

 System.out.println("adicionado stereo - fim");
 }
 else{
 tg.addChild(obj.getShape());
 }
 }

35

 myLocale.addBranchGraph(bg);
 }

 /**
 * Método responsável pela adição dos BranchGroup no nó MyLocale
 * @param bg
 *
 */
 public void addGrafo(BranchGroup bg)
 {
 myLocale.addBranchGraph(bg);
 }
}

36

 Apêndice D – Código fonte da classe Lamina.java

package ViMeT;
import com.sun.j3d.utils.geometry.Box;
import javax.vecmath.*;
import com.sun.j3d.utils.image.TextureLoader;
import javax.media.j3d.*;

public abstract class Lamina extends Object3D{

 static Box lamina;

 public Lamina(){

 criaLamina(0.3f, 0.005f, 0.1f);
 }

 public abstract Shape3D getShape();

 static void criaLamina(float x, float y, float z){

 Appearance vidro = new Appearance();

 //Habilita Transparencia
 TransparencyAttributes t = new TransparencyAttributes(
 TransparencyAttributes.BLENDED,
 0.8f,
 TransparencyAttributes.BLEND_SRC_ALPHA,
 TransparencyAttributes.BLEND_ONE);
 vidro.setTransparencyAttributes(t);

 lamina = new Box(x, y, z, vidro);
 }
}

37

 Apêndice E – Código fonte da classe LaminaSozinha.java

import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.vecmath.*;
import com.sun.j3d.utils.geometry.Box;
import com.sun.j3d.utils.image.TextureLoader;

public class LaminaSozinha extends Applet {

 private SimpleUniverse u = null;

 public LaminaSozinha(){

 setLayout(new BorderLayout());

 GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration();

 Canvas3D c = new Canvas3D(config);
 add("Center", c);

 BranchGroup cena = criaGrafoDeCena();

 u = new SimpleUniverse(c);

 // This will move the ViewPlatform back a bit so the
 // objects in the scene can be viewed.
 u.getViewingPlatform().setNominalViewingTransform();

 u.addBranchGraph(cena);
 }

 public BranchGroup criaGrafoDeCena() {

 BranchGroup bg = new BranchGroup();

 Appearance vidro = new Appearance();

 /* Habilita Textura
 TextureLoader loader = new TextureLoader("lamina.jpg", null);
 ImageComponent2D image = loader.getImage();
 Texture2D texture = new
Texture2D(Texture.BASE_LEVEL,Texture.RGBA,image.getWidth(),image.getHeight());
 texture.setImage(0, image);
 texture.setEnable(true);
 vidro.setTexture(texture);
 */

 // Habilita Transparencia

38

 TransparencyAttributes t = new TransparencyAttributes(
 TransparencyAttributes.BLENDED,
 0.8f,
 TransparencyAttributes.BLEND_SRC_ALPHA,
 TransparencyAttributes.BLEND_ONE);

 vidro.setTransparencyAttributes(t);

 Box lamina = new Box(0.3f, 0.005f, 0.1f, vidro);

 Transform3D t3D = new Transform3D();
 t3D.setRotation(new AxisAngle4d(2,2,1,5));

 TransformGroup tg = new TransformGroup(t3D);
 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 tg.addChild(lamina);

 bg.addChild(tg);

 // Have Java 3D perform optimizations on this scene graph.
 bg.compile();

 return bg;
 }

 public static void main(String[] args) {
 new MainFrame(new LaminaSozinha(), 256, 256);
 }
}

